Binomial Theorem

The Binomial Theorem in algebra is as follows:

(a+b)n=k=0n(nk)ankbk(a + b)^n = \sum\limits_{k=0}^{n} {n \choose k} a^{n-k} b^{k}

Note that (nk){n \choose k} comes from Combinatorics where (nk)=n!k!(nk)!{n \choose k} = \frac{n!}{k!(n - k)!}

Examples:

(a+b)4(a + b)^{4} =k=04(4k)a4kbk= \sum\limits_{k=0}^{4} {4 \choose k} a^{4 - k} b^{k} =(40)a4+(41)a3b1+(42)a2b2+(43)a1b3+(44)b4= {4 \choose 0} a^{4} + {4 \choose 1} a^{3}b^{1} + {4 \choose 2} a^{2}b^{2} + {4 \choose 3}a^{1}b^{3} + {4 \choose 4}b^4 =a4+4a3b+6a2b2+4ab3+b4=a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4

(a+b)3(a + b)^{3} =k=03(3k)a3kbk= \sum\limits_{k=0}^{3} {3 \choose k} a^{3 - k} b^{k} =(30)a3+(31)a2b+(32)a1b2+(33)b3= {3 \choose 0} a^{3} + {3 \choose 1} a^{2}b + {3 \choose 2} a^{1}b^{2} + {3 \choose 3}b^{3} =a3+3a2b+4a1b2+b3=a^3 + 3a^2b + 4a^{1}b^2 + b^3