De Morgan's Laws

De Morgan’s Laws explain how to negate logical quantifiers: negating a universal statement becomes an existential one, and vice versa. In formal terms, ¬x P(x)\neg \forall x \ P(x) is equivalent to x ¬P(x)\exists x \ \neg P(x), and ¬x P(x)\neg \exists x \ P(x) is equivalent to x ¬P(x)\forall x \ \neg P(x).

The rules for negating quantifiers can be summarised as: * ¬x P(x)x ¬P(x)\neg \forall x \ P(x) \equiv \exists x \ \neg P(x) * ¬x P(x)x ¬P(x)\neg \exists x \ P(x) \equiv \forall x \ \neg P(x)