Laws of Logic

The Laws of Logic are a set of fundamental principles which are the foundation of logical reasoning.

Let pp, qq, and rr be any three propositions.

Law Formula
Idempotent laws pppp \land p ≡ p
pppp \lor p ≡ p
Identity laws ptruepp \land \text{true} ≡ p
pfalsepp \lor \text{false} ≡ p
Inverse laws p(¬p)falsep \land (\neg p) ≡ \text{false}
p(¬p)truep \lor (\neg p) ≡ \text{true}
Domination laws ptruetruep \lor \text{true} ≡ \text{true}
pfalsefalsep \land \text{false} ≡ \text{false}
Commutative laws pqqpp \land q ≡ q \land p
pqqpp \lor q ≡ q \lor p
Double negation ¬(¬p)p\neg (\neg p) \equiv p
Associative laws p(qr)(pq)rp \land (q \land r) ≡ (p \land q) \land r
p(qr)(pq)rp \lor (q \lor r) ≡ (p \lor q) \lor r
Distributive laws p(qr)(pq)(pr)p \land (q \lor r) ≡ (p \land q) \lor (p \land r)
p(qr)(pq)(pr)p \lor (q \land r) ≡ (p \lor q) \land (p \lor r)
De Morgan's laws ¬(pq)¬p¬q\neg (p \land q) ≡ \neg p \lor \neg q
¬(pq)¬p¬q\neg (p \lor q) ≡ \neg p \land \neg q
Implication conversion law pq¬pqp \rightarrow q ≡ \neg p \lor q
Contrapositive law pq¬q¬pp \rightarrow q ≡ \neg q \rightarrow \neg p
Reductio ad absurdum law pq(p¬q)falsep \rightarrow q ≡ (p \land \neg q) \rightarrow \text{false}