Trig Angle Identities

Fundamental Identity

sin2a+cos2a=1\sin^2a + \cos^2a = 1

Therefore:

cos2a=1sin2a\cos^2a = 1 - \sin^2a

sin2a=1cos2a\sin^2a = 1 - \cos^2a

Angle Sum Identity definitions

The Sine of two angles added together identity is as follows:

sin(a+b)=sin(a)cos(b)+sin(b)cos(a)\sin(a + b) = \sin(a)\cos(b) + \sin(b)\cos(a)

And subtraction:

sin(ab)=sin(a)cos(b)sin(b)cos(a)\sin(a - b) = \sin(a)\cos(b) - \sin(b)\cos(a)

The Cosine of two angles:

cos(a+b)=cos(a)cos(b)sin(a)sin(b)\cos(a + b) = \cos(a)\cos(b) - \sin(a)\sin(b)

And subtraction:

cos(ab)=cos(a)cos(b)+sin(a)sin(b)\cos(a - b) = \cos(a)\cos(b) + \sin(a)\sin(b)

Cosine Properties

Cosine is an Even Function. Meaning, any negative inputs are equal to the equivalent positive input.

cos(c)=cos(c)\cos(-c) = \cos(c)

We can use the angle sum definition of a+aa + a to defined cos(2a)\cos(2a):

cos(2a)=cos(a+a)=cos(a)cos(a)sin(a)sin(a)=cos2(a)sin2(a)\cos(2a) = \cos(a + a) = \cos(a)\cos(a) - \sin(a)\sin(a) = \cos^2(a) - \sin^2(a)

Or simply:

cos(2a)=cos2(a)sin2(a)\cos(2a) = \cos^2(a) - \sin^2(a)

We can express entirely in terms of cos\cos Using the Fundemantla Identity:

Since we know

sin2(a)=1cos2(a)\sin^2(a) = 1 - \cos^2(a)

Then

=cos2(a)(1cos2(a))= \cos^2(a) - (1 - \cos^2(a)) =cos2(a)1+cos2(a))= \cos^2(a) - 1 + cos^2(a)) =2cos2(a)1= 2\cos^2(a) - 1 =cos(2a)= \cos(2a) (need to understand this part)

Cosine Reduction Identity

2cos2a=cos2a+12\cos^2a = \cos 2a + 1

cos2a=12(1+cos2a)\cos^2a = \frac{1}{2} (1 + \cos 2a)

Sine Properties

Sine is an Odd Function. Meaning, any negative inputs are equal to the negative value of the function.

sin(c)=sin(c)\sin(-c) = -\sin(c)

Sine Reduction Identity

2sin2a+cos2a=12\sin^2a + \cos 2a = 1 2sin2a=1cos2a2\sin^2a = 1 - \cos 2a sin2a=12(1cos2a)\sin^2a = \frac{1}{2} (1 - \cos 2a)